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J. Bhys. A:  Math. Gen. 15 (1982) 2285-2306. Printed in Great Britain 

Information theory and the spectrum of isotropic 
turbulence 

Timothy M Brown 
High Altitude Observatory, National Center for Atmospheric Researcht, High Altitude 
Observatory, PO Box 3000, Boulder, Colorado 80307, USA 

Received 25 September 1981 

Abstract. The problem of determining the spectrum of isotropic turbulence can be thought 
of as one of finding the most appropriate joint probability distribution for the flow taken 
as a whole. From the point of view of information theory, what one means by the most 
appropriate distribution is clearly defined and easily justified; it is the probability distribu- 
tion that maximises the information theory entropy, subject to whatever constraints one 
can impose on the flow. In this work, the relevant constraints are taken to be the Reynolds 
number and energy dissipation rate of the flow, energy balance (on average) at every 
point in wavenumber space, and adherence to the Navier-Stokes equations. Using these 
constraints, it is shown that the maximum entropy formalism leads to a pair of coupled 
equations describing the distribution of energy in the turbulent spectrum, and the correla- 
tions between the amplitudes of velocity components with nearly identical wavenumbers. 
Although solutions to these equations are not presented, it develops that if a power-law 
solution exists, it can only be the Kolmogorov law E ( k ) K  k-5‘3. In arriving at this result, 
a useful concept is that of the ‘turbulent temperature’, defined as the reciprocal of the 
derivative of the entropy with respect to the local energy dissipation rate. This quantity 
plays a role directly analogous to the thermodynamic temperature, governing the rate of 
energy exchange between different wavenumbers. It is found that, within the spectrum’s 
inertial subrange, the turbulent temperature is virtually constant, with only a minute 
temperature gradient required to drive the energy cascade. 

1. Introduction 

It is well known that describing turbulent flows in terms of average correlation functions 
leads to an infinite set of coupled equations. Deriving any useful information about 
such flows therefore involves some (more or less ad hoc) means of closing the equation 
set so that only a finite amount of labour is required to get a solution. The merit of 
any such closure method then depends on its agreement with the experimental facts, 
and on the plausibility of the arguments justifying its adoption. 

One closure method that has received little attention is to suppose that the flow 
behaves in such a way that a suitably defined entropy is maximised, subject to whatever 
constraints are imposed by boundary conditions and the equations of motion. Edwards 
and McComb (1969) discussed this method and showed that it leads to reasonable 
turbulence spectra, but their treatment has not been favoured because of its extreme 
complexity, and because its physical interpretation is obscure. In this paper, ,I will 
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consider a similar approach, with the entropy defined in terms suggested by information 
theory. My aim is to clarify both the logical justification and the physical implications 
of this approach, and to show that it leads naturally to a Kolmogorov energy spectrum 
in the case of homogeneous, isotropic, turbulence in an incompressible fluid. Although 
this theory leads to equations that can in principle be solved for the exact turbulent 
spectrum, I will not do this here. Rather, the emphasis throughout will be on physically 
acceptable approximations, chosen to help illuminate the processes at work. It should 
be noted, however, that this approach differs from that taken by Edwards and McComb 
(1969), in that the current work ascribes central importance to the presence of small 
but non-zero viscous dissipation at all wavenumbers. 

Since the arguments given here are drawn from two disparate areas of physics, a 
short preview is in order to help keep things straight. The next section contains a 
brief summary of the relevant equations for turbulent flow, and of the fundamental 
ideas about probability and information that will be required later on. Two related 
subjects will merit particular attention: the difference between traditional approaches 
to solving the turbulence equations and the current approach, and the logical 
justification for invoking a maximum entropy principle. Section 3 contains a naive 
application of the results of § 2 to the problem of finding a turbulent spectrum. 
Although fundamentally inconsistent, this example provides a useful reference point 
for later results. Section 4 is a short detour into probability and information theory. 
Its purpose is to establish a result that is crucial for later calculations of the correlation 
between velocity amplitudes at different wavenumbers in a turbulent spectrum. In 
9 5 ,  a relation is derived giving the energy flow into a given wavenumber range in the 
turbulent spectrum from any other wavenumber range. This result leads to the 
aforementioned equations for the exact spectrum. These equations are, however, 
immediately dropped in favour of an approximation (the ‘constant-temperature’ 
approximation) that is both very accurate and much more tractable. Section 6 shows 
that by combining the constant-temperature approximation with the requirement that 
the turbulent energy should go smoothly to zero at large wavenumbers, one obtains 
the Kolmogorov spectrum E ( k ) ~ k - ” ~ .  Section 7 contains a validation of the con- 
stant-temperature approximation, estimates of global entropy relationships, and 
similar loose ends. Finally, § 8 is a discussion of the principal ideas already developed 
and their consequences, with analogies from other areas of physics. 

2. The connection between turbulence and information theory 

The Navier-Stokes equations provide the starting point for any discussion of tur- 
bulence. For an incompressible fluid, these may be written 

au(x, t ) / a t  + u(x ,  t )  ’ V u ( x ,  t )  = - V p ( x ,  t )+  vV2u(x ,  t ) ,  (1) 

v u(x,  t )  = 0. (2) 

For the sake of definiteness, suppose that the fluid under consideration is contained 
within a cube of edge length L, and that the boundary conditions are periodic, i.e. 
that the flow pattern within the cube is repeated infinitely often outside it. Also 
suppose that the fluid within the cube is being stirred in a random fashion, with a 
characteristic stirring scale equal to the edge length L, and with a characteristic stirring 
speed U. In this case, the flow can be characterised by its Reynolds number (the ratio 
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of inertial to viscous forces) and by the rate of energy input per unit mass: 

Re = uL/v, 

G = u 3 f L .  
(3) 

(4) 

In turbulent flows, the Reynolds numbers are commonly very large, so that the 
large-scale fluid motions are rapidly broken up by nonlinear interactions (the advective 
term in equation (1)). In this way, energy is transferred to smaller and smaller scales, 
until eventually a scale is reached at which viscous forces become important, and the 
energy is lost to dissipation. To describe this process more directly, it proves convenient 
to take the Fourier transform of equations (1)-(2) (see e.g. Orszag (1970), which this 
part of the discussion follows closely). First, write 

( 5 )  u (x ,  t) = 1 a(k, t) exp(ik * x), 

where, by virtue of the assumed periodicity, the k are discrete and given by 

k = 2 m f L ,  n = (n l ,  n2, 4, n i = 0 , * 1 , * 2 , .  . . . (6) 

Then the transiormed Navier-Stokes equations become 

Greek subscripts range from 1 to 3, summation over repeated indices is implied, and 
q = k-p. Here and in what follows, k 2 = k  k, u 2 = u  * a + ,  and the explicit time 
dependence will usually be dropped. For convenience, the velocity basis functions 
exp ik x will often be referred to as ‘modes’. These equations contain no explicit 
forcing terms, although equation (4) requires that some such forcing be present. This 
omission is deliberate; the predictable characteristics of isotropic turbulent flow 
presumably do not depend on the details of the forcing, hence these details should 
not appear explicitly in the equations of motion. For the purposes of this paper, it 
will be sufficient to know that the mean energy input rate is given by equation (4), 
and that this energy is put into the system at the smallest wavenumbers. 

For a typical turbulent flow, the number of terms in the sum in equation (7) is 
exceedingly large. For this reason, tracing the time evolution of such a flow by means 
of equations (7)-(10) is a problem so complex as to defy computation, let alone 
comprehension. Fortunately, for practical purposes one is usually concerned only 
with certain systematic characteristics of a given flow (the average transport coefficients, 
for example). The detailed time evolution is then of no interest whatever. The flow 
is then most appropriately described in terms of a probability distribution, and the 
quantities of interest are obtained by taking moments of this distribution. To define 
the notion of the probability distribution more clearly, note that the instantaneous 
state of the flow can be described by a vector in a space r of very large dimension, 
with the components of the vector given by the a(k)  from equation ( 5 ) .  The probability 
function P is then a probability density defined on r. An important feature of this 
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choice of coordinate space (i.e. the coordinates given by the amplitudes of the Fourier 
components of velocity) is that, in the absence of driving or dissipative terms in 
equations (7)-(lo), points in r describing turbulent flows evolve in time in accordance 
with Liouville’s theorem. That is, suppose that at some initial time one knows that 
a particular flow is described by a point within a volume element du in r. Then as 
the flow evolves, the volume element within which the flow is to be found will move 
through r, and its shape will change, but its volume will remain du. This fact allows 
one to ascribe equal a priori probabilities to equal volumes in r. 

For conceptual clarity, it proves useful to discretise P. This is easily done by 
subdividing r into cells, with each cell as small as one likes. Then moments of the 
probability distribution becomes sums over all the cells in r. For example, if there 
are M distinct cells in r, then for a properly normalised distribution the zeroth moment 
is 

More compactly, 

1 Pr= 1. 
r 

When sums are done over r, they will be denoted as above with upper case Greek 
indices. 

Within this framework, the traditional approach to the problem of a stationary 
turbulent flow is to imagine an ensemble of similarly prepared flows, with the vector 
representing each realisation independently evolving in time. The probability distribu- 
tion, in this view, is proportional to the local density of points in I‘, and the turbulence 
problem amounts to finding a distribution of densities that, under the influence of 
equations (7)-(lo), does not change with time. This is a very difficult problem, on 
which a great deal of work has been done (see Monin and Yaglom (1975) for a 
review). However, this is not the only interpretation that one can put on the probability 
distribution P, and a different interpretation leads to a significantly different strategy 
€or attacking the problem. 

According to another point of view, one considers the assertion that at the time 
in question, the flow may be found within cell E in r. The probability Pz is then the 
rational degree of belief to which this assertion is entitled, given all of the available 
information concerning the flow. Defined in this manner, the probability distribution 
is descriptive of one’s knowledge of the flow, rather than dependent on the density 
of points in an ensemble. As applied to statistical mechanics, this view has been 
advanced by, among others, Katz (1967), Baierlein (197 l ) ,  and particularly by Jaynes 
(1957a, b, 1979). In the context of turbulence, one imagines trying to estimate where 
in r a particular flow is to be found, given only the stationarity of the flow, the 
Reynolds number, the energy input rate, and the Navier-Stokes equations. The 
information at one’s disposal is manifestly inadequate to isolate one cell in r in which 
the flow may be found, so a description in terms of probabilities is evidently in order. 
The question is what probability distribution one should pick. 

The answer to this question comes in two parts. First, distributions that conflict 
with the available knowledge should be excluded. For example, many points in r 
correspond to flows that violate the continuity equation (8). These flows cannot occur, 
and must be assigned zero probability. A more interesting restriction arises from the 
stationary character of the flow. Since one’s knowledge about the flow is not changing 
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with time, presumably the probabilities one assigns should be independent of time as 
well. Further, since the average properties of the flow are assumed to be independent 
of time, it must be true that 

for any dynamical quantity g one cares to name. (Here, ‘dynamical quantity’ is used 
in the sense of any function of the instantaneous mode amplitudes, defined if need 
be by reference to the equations of motion.) In particular, the mean time derivative 
of the energy at wavenumber k should vanish, for any value of k: 

(a[+a*(k)]/at> = 0. (14) 
Insisting on the time invariance of the energy alone is a choice that requires some 
discussion, However, in the interest of continuity, this discussion will be postponed 
until 0 8. 

Simply forcing agreement with known information is not generally sufficient to 
determine a unique probability distribution. For example, there are infinitely many 
distributions that are consistent with equation (14), each corresponding to a different 
distribution of energy among the various values of k. An additional criterion is needed 
to isolate one probability distribution from all the rest. A reasonable choice is the 
maximum entropy principle. This states that when choosing among a number of 
probability distributions, all of which agree with the available information, one should 
prefer the distribution that maximises the entropy. The entropy used here is defined 
in a sense consistent with information theory: 

(15) 
r 

where h is a positive constant that may be chosen arbitrarily. With a suitable choice 
for h, S may be interpreted as the amount of information (in bits, say) required to 
specify the cell in phase space actually occupied by the flow, with prior information 
consisting only of the probability distribution. Further elaboration of the notion of 
entropy as missing information can be found in the original work of Shannon (Shannon 
and Weaver 1949), and in any of a number of treatises in physics and engineering 
(Brillouin 1962, Khinchin 1957, Goldman 1953). A final point concerning the entropy 
as just defined has to do with the coordinates a (k) used to define the space r. Applying 
an arbitrary nonlinear transformation to these coordinates will in general change the 
value computed for the entropy, and indeed maximising the entropy in one such 
transformed coordinate system does not necessarily maximise it in others. Thus, one 
is obliged to ask whether one particular coordinate system is the appropriate one for 
performing entropy calculations, and if so, why? In the absence of dissipation, the 
coordinates used here are easily justified because of the Liouville property discussed 
above. However, when viscous forces are present, this property no longer applies, 
and the correct choice of coordinate is not clear. Lacking a proper resolution to this 
problem, the approach taken here will simply be to use the coordinates that are 
appropriate in the non-viscous case. This approach will lead to useful results, but one 
should remember that these results rest on an assumption that has not yet been justified. 

To illustrate some of the properties of the information theory entropy, consider 
a probability distribution consisting of a product of independent gaussians. For a 
gaussian function of one variable, the entropy may be computed directly. Taking a. 

S = -h C Pr In&), 
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as the (one-dimensional) cell size in r, let 

2 2 -112 1 2 2 a 2  Pr=(2.rr0 ao) exp- In Pr = -5  ln(27ra ao) -- 
2a2a;* 

This probability distribution has been chosen so that it is properly normalised, and 
so that its second moment is cr2aX: 

Then, if U is large enough for the sum over l' to be approximated by an integral over 
a, one obtains an elementary integral 

=h ( lnuao+ t ln  27r+3). (18) 

Thus, apart from constant additive terms, the entropy is proportional to the logarithm 
of the width of the gaussian. This is reasonable: a is roughly the number of cells in 
which a is likely to be found. To isolate the one cell in which a actually resides, one 
needs to specify an integer between 1 and U, requiring about In a bits of information. 

To extend this result to the product of many independent one-dimensional proba- 
bility distributions, write 

Here, there is no restriction on the form of the functions q. In particular, they need 
not be gaussian, and in fact they need not all be of the same form. The normalisation 
condition (1 1) must hold, however. From this joint probability distribution, one can 
compute the probability that a particular mode j has the amplitude a ( j ) ,  regardless 
of the amplitudes of all the other modes. This is done by summing over all of the 
amplitudes except j :  

(all k # j )  . . . c Tb(kM)I .  (20) 
O(khf )  

Pdu( j ) I=  q [ a ( j ) l  c d a ( k d l *  * * 

n ( k l )  

By invoking the normalisation condition, one immediately obtains 

so that 

i.e. the one-dimensional probability distributions are normalised individually. Since 
this is true, it is consistent and convenient to choose the normalisation for the q so that 
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valid for all values of k. The entropy may now be written as 

s = - h C P r l n P r = - h  r a(kd . . .  a(kM)  (~ s [a (k) l ) ( I : lns [a (k) l ) .  k 

(24) 

This in turn may be rewritten in the form 

Now for a given value of k, the terms in Z In s [ a ( k ) ]  combine with only one of the 
sums in the product over k. By virtue of (23), all the other sums are equal to unity, 
and equation ( 2 5 )  may thus be written as 

Thus, for a joint probability distribution in which the variations in different modes 
are independent of one another (a product distribution), the entropy is equal to the 
sum of the entropy contributions from the individual modes. Again, this is in agreement 
with one’s intuitive notion of what constitutes information. Since the variations in 
different modes are uncorrelated, knowledge of the amplitude of one mode imparts 
no knowledge about the amplitude of any other mode. The information needed to 
specify the actual state of the flow is then the sum of the information required for 
the individual modes. 

Finally, equations (18) and (26) may be combined to give the entropy associated 
with a probability distribution that is the product of many gaussians. As a rule, only 
entropy differences are of interest, so constant terms in the entropy may be dropped. 
This leads to 

(a  ’( k))”’ 
S = - h C I n  , 

k a0 

a result that will prove useful shortly. 
As this example indicates, the entropy is a quantitative measure of one’s ignorance 

concerning the system in question. This viewpoint provides a simple justification for 
the application of the maximum entropy principle to fluid dynamics. Probability 
distributions with less than the maximum entropy imply more knowledge about the 
flow than does the maximum entropy distribution. However, all the distributions are 
based on the same prior knowledge. Therefore, to avoid making assertions about the 
state of the flow that cannot be supported by the available information, one should 
choose the probability distribution with maximum entropy. In this sense, the maximum 
entropy principle contains no physics at all. Rather, it is a logical principle, prescribing 
a way to reach consistent conclusions when faced with incomplete information. 

3. A constant-dissipation model 

To clarify the above notions, consider the example of a stationary flow in which all 
the energy is arbitrarily restricted to wavenumbers with magnitudes less than some 
maximum K. Let the energy input rate‘be G, and suppose that viscous dissipation is 
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significant, but that nothing is known about the mechanism by which energy is 
distributed among the various modes. According to the principles outlined above, 
the best estimate for the probability distribution for this flow is that which maximises 
the entropy, subject to the condition that the total dissipation rate equal the energy 
input rate. This constraint may be written 

The only other constraint on the probability distribution is the normalisation condition 
of equation (1 1). The entropy can be maximised by the standard technique of Lagrange 
multipliers. The function to be maximised is then 

where the A are constants to be determined. Differentiating with respect to the 
probabilities gives 

In&= (^h" -+1 ) +- ?( G - 2 v 1 n 2 ( k ) k 2 ) ,  k 

while differentiating with respect to the A recovers the constraint equations. Equation 
(30) shows that, except for constant factors, the probability distribution is a product 
of functions that apply to the individual modes. The mode amplitudes are thus 
independent of one another; this is a consequence of the express lack of knowledge 
about any interactions between modes. The probability distribution that applies to a 
single mode is 

( U )  CC eXp - (2A 1 V k 2 U  ' / h ) ,  (31)  

i.e., the probability distribution is gaussian in the mode amplitude. It is significant 
that this distribution is the same as that derived by Thompson (1981) for randomly 
forced two-dimensional viscous flows, when the forcing is such as to produce no net 
energy transfer between modes. 

The most interesting feature of this model is its energy spectrum. From equation 
(30), it is easy to show that the expectation value of vk2a2 is the same for all modes. 
This result is analogous to the equipartition theorem of statistical mechanics. However, 
in this case the quantity being partitioned equally among the various modes is not 
the energy, but rather the dissipation rate. Behaviour of this sort will recur in later 
sections, so it is useful to show in an explicit way why it happens. First note that from 
equation (27) ,  the entropy can be written as 

The expression takes this simple form because there are no correlations between 
modes. The factor of 4 within the sum occurs because, in an incompressible flow, 
U (k) may have no component along k. Two complex vector components are therefore 
needed to describe U, or fot1.r independent real numbers. The dissipation rate for one 
mode is 

D ( k )  = 2vk2(a2) ,  (33)  
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so 
4 -- as 2 -- 

dD(k)  - - D(k)‘  (34) 

If the entropy is to be maximum, the derivative in equation (34) must be the same 
for all modes; otherwise, it would be possible to increase the entropy by transferring 
dissipation from one mode to another. Thus D ( k )  must be the same for each of the 
allowed modes. Its numerical value depends on the value of G, and on how many 
distinct modes are included in the allowed wavenumber range. 

The energy spectrum, as usually defined, is the total energy to be found per unit 
shell thickness in a shell of radius k : 

~ ( k )  = 4.sr($k2(a2(k)>). (35) 

E ( k )  is evidently proportional to D(k) ,  so for this model, the predicted energy spectrum 
is constant out to the arbitrarily chosen cut-off, and is zero thereafter. The reason 
for this odd behaviour is precisely the neglect of processes that transfer energy from 
one mode to another. These energy transfer processes arise from the nonlinear 
interactions described in equation (7), and consequently depend on the correlation 
between the amplitudes of different modes. To understand how these correlations 
affect the energy spectrum, one needs to have accurate expressions for the efficiency 
of energy transfer produced in this way, and for the effect of such correlations on the 
entropy. 

4. The entropy decrease due to correlations between modes 

In the simple model of § 3, the velocity amplitudes of different modes are uncorrelated, 
and there can be no mean energy transfer between modes. This occurs because no 
explicit energy balance constraint for individual modes is imposed on the probability 
distribution. It now becomes necessary to determine how the entropy changes when 
such constraints are applied. 

To do this, consider a inaximum-entropy probability distribution Po, that is 
appropriate to one’s knowledge of a system in the presence of certain constraints that 
are linear in the Pr, but are otherwise unspecified. Po is assumed to be properly 
normalised, and has an associated entropy: 

Suppose that f is some dynamical quantity satisfying 

We now wish to know how the entropy changes if an additional constraint is added 
to the probability distribution, namely that ( f )  = F, where F is some definite value. 
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If the new probability distribution is denoted by P, then equation (30)  shows that P 
must be of the form 

P = K P ~  exp - A (F - f)/ h, (39)  

where K is a normalisation constant and A is an undetermined constant multiplier. 
This formal solution leads to a formal difficulty, namely that many possible forms for 
f, e.g. f a trilinear function of the a (k), lead to distributions P that are not normalisable. 
However, in many interesting cases (including all the applications considered here), 
AF/h is very small compared to unity, and so is AF/h for regions of r where Po is 
significantly different from zero. In this case, P is significantly different from zero in 
two regions: one near the origin where Po is large, and one far from the origin where 
the small high-order terms succeed in dominating the (usually gaussian) decrease of 
Po. If one considers only the amplitude of a single mode, the separation between 
these regions in amplitude space is indeed very large; for the trilinear mode interactions 
that will appear in the next section, it is typically Re times the width of Po. This 
suggests that, in order to preserve continuity of P as AF goes to zero, one should 
simply ignore that part of P that is far removed from the origin. On the other hand, 
one may expect significant correlations between the amplitudes and phases of the 
very large number of modes contributing to the instantaneous energy transfer. Since 
the complete probability distribution consists of the product of many exponentials 
like that in equation (39) ,  it is possible to encounter normalisation difficulties without 
any need of the velocity amplitudes growing unduly large. These and similar problems 
were discussed by Orszag (1966),  but he did not succeed in resolving them. For the 
current purposes, it will simply be assumed that one is justified in truncating the 
probability distribution at amplitudes that are large enough to include most of the 
guassian core of the probability distribution, but small enough to avoid problems with 
the normalisation. Then equation (39) may be approximated by 

P = K (1 - AF/ h)Po( 1 + A f /  h ) .  (40) 

Since P itself must be normalised, 

But by virtue of equation (38) ,  the term containing f vanishes, so that 

P = Po( 1 + A f /  h ). (42)  

The value of A is determined by the constraint on f 

where the angle brackets indicate an average over the initial probability distribution 
Po. The new probability distribution is then given by 
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The entropy of this distribution is approximately 

F 2  f F  
( f  ) r “‘(f’) 

= S o - h ~ - h ~ l n P  -. 

Ordinarily, ( f )  vanishes because f is strictly antisymmetric with respect to PO. If this 
is true, the last term in equation (46) vanishes, and the new entropy is given by. 

S=So-hF2 / ( f2 ) .  (47) 
This is a plausible result. An additional constraint must cause the entropy to 

decrease, since the extra constraint implies additional information about the flow. The 
decrease must be at least quadratic in F, since the original probability distribution 
maximised the entropy with F = 0 .  Finally, ( f ’ )  is a measure of how serious a 
dislocation in Po one requires to produce a given value of ( f ) .  If (f’) is large, then 
Po need not be modified very much to conform to the new constraint, and the entropy 
change is rather small. 

From the point of view of determining the turbulent spectrum, the qualitative 
importance of equation (47) is that the correlations required to transfer energy between 
modes entail a loss of entropy. It will develop that the correlations of interest for 
energy transfer are those between sets of three modes, at least two of which are widely 
separated in k space. Although there is no inherent difference, it proves convenient 
to distinguish between correlations of this sort and correlations involving two or more 
modes that are close neighbours in k. In the latter case, the entropy loss due to 
correlations can best be described in terms of N, the effective number of independent 
velocity values per mode. If there are no local correlations between modes, then 
N =4, as in equation (32). On the other hand, if M adjacent modes are perfectly 
correlated, four values suffice to describe the entire group, and N = 4/M. Thus, in 
the absence of explicit long-range constraints, the entropy per mode is 

S k  = Nh ln((a2(k)>”’/ao). (48) 

It is important to note that, unlike the three-mode correlations, correlations 
between pairs of modes described by the N ( k )  may not persist indefinitely. This is 
so because such correlations necessarily feed energy into (or extract it from) modes 
with particular wavenumbers. For such a process to continue in perpetuity implies a 
preferred direction in the flow, and hence a breakdown of isotropy. It is consistent 
to consider the groups of correlated modes described by the N ( k )  as wavepackets, 
with each group of modes associated with a localised disturbance somewhere in the 
fluid volume. Then, if one knows the position of the disturbance and the complex 
amplitude of a single mode in its associated wavepacket, the amplitudes of all the 
other modes in the packet are determined as well. Thus, the N ( k )  describe a sort of 
conditional correlation, with a temporal persistence that is only as long as the lifetime 
of the associated disturbances. 

5. The energy flow between modes 

It is now possible to approach the problem of energy transport between modes. The 
approach will be to choose maximum-entropy probability distributions for each 
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wavenumber k, using the N ( k )  and the mean energy transfer rates between modes 
as unspecified free parameters. The values taken by these parameters will then be 
chosen so as to maximise the entropy globally. In the arguments that follow, the 
expressions are simplified if sums over all of the modes are approximated by integrals 
over k space. From equation ( 6 ) ,  the number of modes per unit volume in k is 

= V, (49) 

so that 

F + v J d3k. 

In a similar manner, quantities like the dissipation rate will no longer be referred to 
as dissipation per mode, but rather as dissipation per unit volume in k space (or 
'specific dissipation'). Because of the isotropy of the flow quantities averaged over 
the probability distribution can be functions of the magnitude of k, but not of its 
direction. This fact will be used explicilty from time to time. 

With these notational conventions, the instantaneous rate of energy transfer into 
a single mode due to nonlinear interactions can be determined from equation (7): 

(51) a 1  2 
+a = t Im( ca,,(k) v J d3p a: (k, t ) a p ( p ,  t ~ 4 ,  f ) )  . 
at 

Dropping the explicit time dependence, the specific rate of energy transfer from the 
modes near p to those near k is thus 

f p k  ='v21 - 2  m[C&d (.k)ap(p)ay(q)l. (52) 
Two average quantities of interest can be formed from f p k :  the mean and mean square 
specific rates of energy transfer. These are 

Now write a, = a ( k )  exp i&, with similar expressions for the other amplitudes. If the 
three-mode correlations are not very strong, then one may expect these (real) mode 
amplitudes and phases to be unrelated, and 

( f i k )  = av4C~,,(a2(k)>(a2(p))(~2(4))(sin2(-~k + 4 p  + 44)). ( 5 5 )  

Then, under the same assumption, the average value of the sin2 function may be taken 
to be $, and 

(56) 

The specific entropy S(k) depends on (a2@)), and on the character of the local 
and long-range correlations described by N ( k ) ,  ( f p n > ,  and (&) .  The effect of the local 
correlations is readily determined from equation (48), but that of the long-range 
correlations responsible for energy transfer is more complicated. Suppose that ( f p k )  

is required to take the particular value &pk.  If there were no local correlations, this 
requirement would imply V2 constraints per unit volume of k and p, one for each 
pair of modes in the volumes under consideration. However, the presence of local 
correlations means that not all of the modes are independent, and fewer constraints 
need be applied. The number of independent modes per unit volume near k, p are 
VN(R), VN(p), respectively. The number of distinct constraints put on the probability 

2 2 2  (f i k )  = v4c$& k a  p a  q .  
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distribution per unit volume of k and p is then V 2 N ( k ) N ( p ) ,  and each constraint is 
of the form (fpk) = &pk. The specific entropy is then 

2 

S(k) = hVN(k)  In (uz (k ) )”2 -h  d3p V2N(k)N(p) - .  
a0 2 

(57)  

The factor of $ in the integral term corrects for the double counting of constraints 
that takes place if k and p are interchanged. 

Now consider a small region of wavenumber space near wavenumber k. On 
average, this region gains energy from some parts of wavenumber space and loses it 
to other parts; the difference between the gain and loss rates is the local dissipation 
rate. Since the dissipation rate for a particular mode depends only on (a2>,  the 
mean-square mode amplitude can be determined if all of the &pk are known. Thus in 
equation (57) ,  S may be considered a function of the N ( k )  and the &pk. 

One can imagine changing the probability distribution so as to vary the energy 
transfer between k and some other wavenumber region ( p ,  say), without changing 
any of the other energy transfer rates. In general, this variation will modify the entropy 
not only through its direct effects in the integral in equation (57) ,  but also through 
its influence on the ( a 2 ( k ) )  and (fik). Recalling that &pk is defined in the sense of an 
energy flow from p to k, the variations in dissipation rates for a given variation in &pk 

are 

m ( k )  = dEpk, dD(p)  = -dSpk. ( 5 8 )  

These in turn imply variations in the amplitudes, e.g. 

d(a2(k))1/2/a&pk = 1 / 4 V ~ k ~ ( ~ ~ ( k ) ) ’ / ~ .  (59)  

The variations in mode amplitudes resulting from (58) ,  (59)  in turn cause variations 
in (fik), but one can demonstrate that for large Reynolds numbers, these have a 
negligible effect on the entropy. The sum of these variations must result in no net 
change in the entropy if the probability distribution is to be in accord with the maximum 
entropy principle. From equation (57) ,  the contributions to the specific entropy from 
k, p ,  and their mutual interaction is given by 

Thus, to maximise the entropy, 

The quantity v k 2 ( a 2 ( k ) ) / N ( k )  plays a very important role here. It is closely 
analogous to the usual temperature seen in statistical mechanics, since its reciprocal 
is a measure of the entropy gain per unit dissipation. Since this analogy is so suggestive, 
and since no confusion with the thermodynamic temperature will arise here, this 
grouping of terms will henceforth be called the ‘turbulent temperature’ (or just 
‘temperature’), and will be denoted by T ( k ) .  With this definition, the energy flow is 

It is evident from equation (62)  that energy flows from regions of high T to regions 
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of low T, as the terminology entitles one to expect. As with the example of 0 3, this 
happens because transferring dissipation from a higher- to a lower-temperature region 
increases the net entropy. However, in the current case, the very process of transferring 
energy decreases the entropy. The balance of these two effects determines the energy 
transfer rate between modes. The net specific energy input rate is now determined 
by integrating equation (62) over p :  

Before proceeding, it is useful to give an expression for the temperature in terms 
of the known parameters of the flow. The energy driving the flow is, by assumption, 
inserted at very small wavenumbers. Further, since the fluid is being stirred randomly, 
it is consistent to suppose that the mode amplitudes at these wavenumbers are 
uncorrelated. Then for k = 27r/L, N = 4, and (a2)  = u2. The temperature at very low 
wav,enumbers is 

T = V ( ~ ~ ) ~ U ~ / L ~ K  G/Re. (64) 
One may obtain an additional equation relating N ( k )  and &pk by maximising the 

entropy with respect to variations in N ( k ) .  Once more allowing for double counting 
of interactions between p and k as k runs over its range, 

2 

( f p k )  
-- d3p V2N(p)*= 0. 
as 

a N ( k ) - h v l n  

Substituting for ePk, this becomes 

Determining the spectrum of isotropic turbulence can now be formulated as a 
transport problem. One wishes to find the run of ( a 2 ( k ) ) ,  N ( k )  satisfying the constraint 
of local energy balance in k. This is simply a statement that, at every wavenumber, 
the net energy input rate from nonlinear interactions with other modes is balanced 
by the viscous dissipation rate: 

E (k) = m k ) ,  (67) 
with the additional constraint that the total dissipation balances the total energy input: 

r *  

V I  4?rk2D(k) dk = G. 
0 

The boundary conditions are that (a ' )  and N at small k must agree with the values 
imposed by the stirring process. 

A clearer picture of the problem now results if ( f f k )  is written out explicitly. 
Equations (33), (56), (63) and (67) can be combined to give 

Now the form of C,&) requires attention. Without loss of generality, k can be 
taken to lie along the x axis. Then k, p, and 4 are as shown in figure 1. Consideration 
of equations (9)-(10) shows that with this choice of axes, the only non-zero components 
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Figure 1. The geometry of wavenumbers occurring in the triple product in equation (69). 

of Cap, are CZl2, C313, C221, and C331; these are all equal to k. The velocity component 
of a mode parallel to its wavevector must be zero, because of the continuity equation 
(8). On the other hand, symmetry requires that the two components perpendicular 
to the wavevector have identical average properties. Thus, C%,,(k) may be written 

cfp, (k) = k2[sin e(i +cos +) +sin $(I +cos e)]’. 

c’,,, (k) = k 2  sin2 e[i +cos + + ( p / q ) ( l  +cos e) ]  = k 2 a 2 .  

(70) 

Using the law of sines, this is 

(71) 

By substituting this result into equations (69) and (66),  using the definition of T ( p ) ,  
and writing the integration in terms of p and 8, one obtains 

These are a coupled pair of integral equations describing the variation of the mode 
amplitudes (a2 (k ) ) ,  and, through N ( k ) ,  the strength of local correlations between 
modes. It appears that a unique solution of equations (72)-(73) can be found, but 
this will not be done here. Some of the properties of such a solution merit attention, 
however, and are accessible without going into unnecessary details. 

Equation (72) indicates two important things. The first of these is most readily 
seen by dividing both sides by U’.  Then using the definition of Re, one gets the 
approximate expression 

N ( k )  can grow no larger than 4, by definition, but the right-hand side contains a term 
of order Re’. Also, for most wavenumbers of interest, one expects the magnitude of 
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a ( 4 ) / u  to be substantially larger than Re-'. If this relation is to be satisfied, one 
must therefore have T ( k )  very nearly equal to T ( p ) ;  i.e. the turbulent temperature 
of the flow must be very nearly constant with wavenumber. This holds except where 
the velocity amplitudes are very small compared with U .  This may easily be understood 
by noting that the nonlinear interactions can transfer energy between modes with 
great efficiency, but for moderate wavenumbers the energy gain needed to offset 
dissipative losses is quite small. Only a small temperature difference is then required 
to drive the necessary energy flux. 

The second point to notice about equation (72)  is that it suggests that the energy 
transport between modes is semi-local. This is meant in the sense that two modes 
are able to exchange energy efficiently only if the magnitudes of their wavenumbers 
differ by a factor of less than about 2. Unless (a2 (4 ) )  or the temperature decrease 
very rapidly with increasing 4, the sin2 8 dependence of 0' assures that significant 
contributions to the integral in equation (72) occur only for p near a plane perpen- 
dicular to k. This prevents significant energy transfer from modes for which p is much 
less than k .  On the other hand, unless ( ~ ~ ( 4 ) )  decreases very slowly with increasing 
4, then contributions to the integral must also drop sharply as p becomes greater than 
k.  Thus, if the spectrum of (a2(k)) lies within a reasonable range of steepness, the 
semi-local character of the energy transport holds good. 

6. The constant-temperature model 

The above considerations give enough information to construct a plausible model of 
isotropic turbulence giving a Kolmogorov spectrum. To do this, one requires three 
assumptions. 

(1) The turbulent temperature is constant out to some maximum value of k called 
k,,,, beyond which it drops rapidly and smoothly to zero. k,,, will ultimately be 
identified with the turbulent dissipation length. 

(2) For k < k,,,, the mode amplitudes are described by a power law in k, explicitly 
a ( k )  = Ak", where A = u(L/27r)". 

(3) The total dissipation at wavenumbers less than k,,, is equal to the energy 
input rate G. 
Of these assumptions, (1) has been partially justified above, and will be considered 
further in the next section. (3)  is' simply necessary for any self-consistent model, 
although there may be some question about the importance of dissipation at wavenum- 
bers slightly larger than k,,,. Finally, ( 2 )  is plausible, and assuming a power-law 
dependence for the amplitudes allows a direct comparison with previous results. 
However, it will not be demonstrated that a power law is a unique (or even correct) 
solution to equations (72)-(73). 

If the amplitudes follow a power law, it is simple to integrate the dissipation and 
obtain a relation for kmax: 

2vvA2 2m+5 
dk = kmax * 

k(2m+4) 
(2m + 5 )  

G = 2vVA2 lokmax (75)  

Substituting explicit expressions for V and A, and invoking the definitions of Re and 
G, 

(76) ( 2 m + 5 )  o c ~ e  ~ - ( 2 m + 5 )  kmax 
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Another expression for kmax can be obtained from equation (72). Because the 
temperature goes smoothly to zero, there must be wavenumbers immediately above 
k,,, for which [ T( p ) /  T(k)  - 11 is of order unity. Because of the semi-local character 
of the energy transfer, the right-hand side of equation (72) will be dominated by 
contributions from modes with 4<kmaX. As T(k) falls, the right-hand side must 
therefore rise to very large values, unless a2(4 )  is small. However, the magnitude of 
the left-hand side of equation (72) is limited, because N(k )  may not take values 
greater than 4. Thus, (72) can be satisfied only if the mode amplitudes near k are 
sufficiently small. This requirement may be written 

(77) (A/ U )  k,",, a Re-' k;i!2L-1/2. 

Once again using the explicit expression for A, this becomes 
kza,",:'/2) 0~ Re-1L-(m+l/2) 

Equations (76) and (78) may be combined to eliminate Re, giving 

(79) (11/2+3m) a L-( l l /Z+3m) k max 

This is a relation between k,,, and L, which must hold independent of the Reynolds 
number. This can only be true if the exponent vanishes, i.e. if 

(80) 

E ( k )  = 2 ~ k ~ a ~ a k - ~ / ~ .  (8 1) 
The constant of proportionality cannot be determined without a detailed treatment 
of the behaviour of the temperature and the velocity amplitudes in the neighbourhood 
of k,,,. It is important to know the value of this constant, since it may be compared 
directly with experimental results. However, this comparison will not be attempted 
here. 

11 m = - x .  

This leads immediately to the familiar Kolmogorov energy spectrum 

7. Validation of certain assumptions, and interpretation 

The development in the last two sections was based on certain assumptions that have 
not been fully justified, and has implications that require further discussion. The two 
principal assumptions underlying the derivation of a Kolmogorov spectrum are the 
constant-temperature approximation and the claim that at some maximum value of 
k, the turbulent temperature drops rapidly to zero. These matters will be discussed 
below. 

It is easy to verify the consistency of the constant-temperature approximation. 
This is done by assuming that T (  p) can be written 

(82) 

which is then substituted into equation (72). By using power-law expressions for the 
amplitudes, and noting that in the constant-temperature approximation N(k)  = Bk2a ', 
equation (77) can be put in the form 

T(P) = T(k)  + (dT/dk)(p - k), 
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Here I ( m )  is a non-dimensional integral of order unity that depends only on the 
power-law exponent m. Equation (83) can be solved for (1/T) dT/dk, with the result 

1 d T  4 v 2  B 1 
T dk T A 2 V  I(m)’ 
--=--- 

The significance of this may be seen by considering (kmax/T) dT/dk, a measure of the 
relative variation of T over the entire range of wavenumbers. Using either equation 
(76) or equation (78) for k,,,, one finds 

(kmaX/T) dT/dk c ~ R e - ’ / ~ .  (85 )  

Thus, for large Reynolds numbers and reasonable wavenumbers, the constant- 
temperature approximation should be extremely accurate. 

The second major assumption made to derive the Kolmogorov spectrum was that 
the turbulent temperature drops rapidly to zero above kmax. Examination of equation 
(72) shows that this cannot be strictly true. Once N(k)  has risen to its maximum 
value, further variations in T(k) can occur only if there are comparable variations in 
the integral of (~’(4)). Since this integral samples modes over a range in k space that 
is roughly comparable to k itself, the characteristic scale for changes in T must be 
about k,,,. Though scarcely a step function, this rate of decrease can be quite steep 
by comparison with that which applies in the constant-temperature region. The 
arguments of the last section do not appear to be affected in any fundamental way 
by this slow temperature drop-off, but an accurate solution to the equations clearly 
must take it into account. 

A few correspondences between the results of this maximum-entropy approach 
and other treatments of turbulence are worth mentioning. First, it is possible to form 
length, velocity, and time scales from k,,, and u(kmax). The length scale is simply 
the reciprocal of kmax: 

1 ot k G;, ot L (86) 

VRMS - [ V-’a2(kmax)k~ax11/2* (87) 
By substituting for ~ ( k , , , )  and k,.,, one finds that for a given value of L, URMS scales 
as 

~ R M s o t  U = (vG)’I4. (88) 

= ( v3/ G) ‘I4. 

The relevant velocity scale is the RMS velocity at scales of about 1. This is roughly 

The time scale is the overturning time for the smallest length scales. This is simply 

~ ~ I / u ~ h l ~ o t ( L / u )  Re-*/’= ( Y / G ) ” ~ .  (89) 
Unsurprisingly, these are the same as the Kolmogorov microscales for a flow with the 
same values of Y and G. To some extent this is just a dimensional necessity, but the 
correspondence provides a limited assurance that no serious errors have been commit- 
ted in the analysis. 

A more interesting issue centres around the behaviour of N(k). In the constant- 
temperature region of k space, N must vary as k2u2 ,  i.e. Thus, within 
that region, the number of adjacent modes that are well correlated with one another 
grows rapidly with increasing k. The regions over which mode amplitudes are well 
correlated may be thought of as wavepackets, with each packet giving rise to a localised 
disturbance in the fluid flow. The characteristic width of these disturbances is inversely 
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proportional to the width of the corresponding wavepacket in wavenumber space. 
This suggests something of the intermittent behaviour of real turbulent flows: short 
wavelength disturbances tend to be concentrated in small, isolated regions occupying 
relatively little of the fluid volume. This is only a qualitative relation, however. A 
quantitative treatment of this effect would have to deal not only with the local 
correlations described by N, but also with the correlations that transport energy among 
widely separated modes. 

Finally, it is interesting to see how the entropy associated with the spectrum just 
derived is distributed in wavenumber space. An expression for the specific entropy 
can be obtained by substituting equation (62) for the energy flow between modes in 
equation (57). Using the power-law form for a ( k ) ,  the constant temperature approxi- 
mation, and equation (82) for T ( p ) ,  the result can be written in the form 

1 ( (u2(k ) ) ’ l2  Lk J) -S= d3kN(k)  In 
V a0 Re212 

where I is the same integral as in equation (83), and J is a related non-dimensional 
integral. The first term in brackets gives the entropy due to the uncertainty in the 
instantaneous mode amplitudes a (k). The second term gives the correction resulting 
from the long-range correlations responsible for energy transport. Both terms are 
modified by the effects of the local correlations described by N ( k ) .  Both I and J are 
roughly of order unity, so it is evident that the long-range correlations ordinarily have 
little effect on the total entropy. The entropy within the constant-temperature region 
may then be approximated by 

S ( k ) =  h V  rkmaxdkBk1/31n ( a  2( k))’” 
Jo a0 

This is easily evaluated; taking terms that vary no faster than ln(Re) to be effectively 
constant, the result is S C C R ~ ~ ’ ~ .  For the most part, this comparatively weak depen- 
dence on Re results from the rapid decline of N ( k ) .  However, for k somewhat larger 
that kmaX, previous arguments show that N must increase rather rapidly to values near 
unity, while the mode amplitudes remain substantially constant. Thus, for k values 
greater than k,,,, the entropy contribution may be estimated as 

Again taking terms in ln(Re) to be constant, this gives SaRe9I4 .  This shows that 
while almost all of the energy and energy dissipation are found at wavenumbers less 
than kmaX, almost all of the entropy resides at larger wavenumbers. 

8. Discussion 

At this point, a brief recapitulation is in order. The problem of determining the 
spectrum of isotropic turbulence has been formulated as one of finding the probability 
distribution that agrees with all known facts about a given flow, but that is maximally 
non-committal about details of the flow concerning which no facts are available. In 
this case, the known facts are taken to be the governing equations of the flow (equations 
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(7)-(lo)), the externally determined flow parameters (energy input rate G and Rey- 
nolds number Re), and the time invariance of the mean turbulent energy at every 
point in wavenumber space. ‘Maximally non-committal’ is interpreted in the sense 
of maximising the information theory entropy associated with the probability distribu- 
tion. This is equivalent to maximising the number of bits of information needed to 
specify (with some stated precision) the instantaneous state of the flow, starting with 
only the facts given above. The entropy defined in this way depends on the amplitudes 
of the various modes, on how many modes are excited, and on the correlations that 
exist between different modes. The correlations between modes are particularly 
important as regards the dynamics of the flow, because these correlations determine 
the rate of energy transport between modes. 

The energy transfer between two regions of wavenumber space depends on a 
subtle interplay between local correlations, long-range correlations, and the mode 
amplitudes. Other things being equal, the total entropy can be increased by transferring 
energy from modes with large amplitudes to those with small amplitudes. However, 
such energy transfer can only occur by means of correlations between the amplitudes 
of the modes in question. These correlations necessarily decrease the entropy, since 
knowing the amplitude of one mode imparts some additional knowledge about all of 
the modes with which the first is correlated. These considerations lead to a unique 
rate of energy exchange between widely separated regions of wavenumber space, at 
which rate the total entropy of the two regions is a maximum. The fate at which 
energy is actually transferred between two regions depends on the number of indepen- 
dent modes in each, i.e. on the local correlations between modes within each region. 
This is because the more independent modes there are, the more independent con- 
straints must be put on the probability distribution in order to transfer energy at a 
given rate. Thus, energy transfer is very efficient between regions of wavenumber 
space where local correlations are strong and extend over many individual modes. 
These local correlations do, however, substantially decrease the local contribution to 
the entropy. 

In discussing the energy transfer, a useful quantity turns out to be the derivative 
of the specific entropy with respect to the specific dissipation rate. The reciprocal of 
this quantity, denoted here by T, is called the ‘turbulent temperature’ or just ‘tem- 
perature’, and is directly analogous to the temperature used in thermodynamics and 
statistical mechanics. In wavenumber space, energy flows from high-temperature 
regions to low-temperature regions, and if the temperatures are nearly the same, the 
rate of energy flow is proportional to the temperature difference. Seen in this light, 
the turbulence problem becomes a transfer problem, with the net energy transferred 
into each wavenumber region dependent on the temperature of the surrounding 
regions, and on some geometrical factors. In order to maintain the stationary nature 
of the flow, the net energy input at each point must equal the net dissipation, and the 
total dissipation must equal the total energy input G. It develops that for large 
Reynolds numbers, the temperature gradient needed to maintain energy balance is 
very small. This leads to the constant-temperature approximation, in which, except 
at the very largest wavenumbers, the temperature gradient is ignored. 

The resulting model of the turbulent spectrum consists of three regions. In the 
region below a critical wavenumber k,,,, the temperature is constant and the ampli- 
tudes are described by a power law in k. In the region well above k,,,, the temperature 
(and therefore the mean mode amplitude) is near zero. Finally, there is a matching 
region, in which the temperature goes smoothly to zero, over a distance comparable 
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to k,,,. To determine what power law applies in the constant-temperature region, 
one first notes that virtually all the dissipation must take place at wavenumbers less 
than k,,,, and this total dissipation must equal G. In addition, the rules governing 
energy transfer between modes allow the temperature to go to zero in the matching 
region only if the mode amplitudes at kmax take a particular value. Both these 
conditions give relations for k,,, in terms of the power-law exponent; the relations 
can be simultaneously satisfied only if the exponent is -9, corresponding to the 
Kolmogorov energy spectrum. 

In this model, the correlations between modes (particularly the local correlations) 
grow more and more important with increasing k, until k,,, is reached. Above k,,,, 
the local correlations rapidly diminish, until at wavenumbers of a few times k,,,, 
individual modes are essentially uncorrelated. One result of this behaviour is that 
while virtually all the dissipation is contained in the constant-temperature region, 
virtually all the entropy is in the matching region. This entropy distribution provides 
a clue as to why local correlations occur at all. By virtue of the definition of T, one 
can increase the total entropy by causing dissipation to take place in low-temeprature 
regions rather than in high-temperature ones. It thus proves advantageous to make 
energy transfer to large wavenumbers as efficient as possible, even though this entails 
a loss of entropy in the constant-temperature region. An interesting side-effect of 
the local correlations that lead to efficient energy transfer is that they tend to concen- 
trate the high-wavenumber energy in small, isolated regions of the fluid. This is 
qualitatively similar to the known intermittent behaviour of turbulent flows, but a 
quantitative treatment has not been worked out. 

The arguments just summarised provide an encouraging indication that a maximum 
entropy approach to turbulence is a useful one. Hqwever, it must be emphasised that 
they do not by any means constitute a proof that this formulation is a correct description 
of turbulent flows. Both the advantages and the limitations of the current treatment 
(and the maximum entropy formalism itself) should be clearly understood. 

First, the chief aim of this paper was to clarify physical concepts, rather than to 
give rigorous demonstrations of the implications of the maximum entropy formalism. 
The characteristics of the model used here have been justified in ways that seem 
plausible, but accurate solutions of the equations are still lacking. However, it is 
evident that the equations themselves are far simpler and more simply arrived at than 
in most theories of turbulence. Indeed, the solutions appear to be quite attainable, 
and they are being pursued. Second, and probably more significant, the maximum 
entropy approach itself is intrinsically better suited to some problems than to others. 
In problems concerning the average properties of stationary flows, maximum entropy 
ideas can likely be used to great advantage. Such problems include a large and 
important fraction of those found in physics, astrophysics, and engineering. However, 
for problems concerning the time evolution of individual flows, the morphology of 
short-lived flow patterns, or the mathematical nature of the turbulence problem, 
maximum entropy techniques will probably be of little help. 

Finally, in cases where it is appropriate, the maximum entropy approach offers a 
significant advantage over other methods in that even its failures provide information 
about the system under consideration. This point has been discussed by Jaynes (1957b, 
1979), and may be illustrated by reference to an issue raised in 0 2. The question 
there was how to justify the choice of time invariance of the energy as the sole 
constraint to be satisfied by the probability distribution. Why not insist on the time 
invariance of some other quantity (or even a large number of such quantities), since 
stationarity requires that all of them must remain constant in time? To answer this 
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question, one must draw a sharp distinction between the logical content of the 
maximum entropy principle, and the physical content of the current application of 
that principle to turbulence. The maximum entropy principle simply provides a 
consistent and tractable means of incorporating some known facts into the description 
of systems for which one’s information is incomplete. The physics of any such 
description lies in determining which of the available facts are important in determining 
the behaviour of the system. Thus, in the current example, the logical (or methodologi- 
cal) content is that the maximum entropy method, with reasonable constraints, leads 
to a well posed description of turbulent flows. The physical content is less general, 
but more useful: the correct energy spectrum can be found by invoking only the 
constraint of local energy balance in wavenumber space. 

One can imagine being concerned with more complicated aspects of isotropic 
turbulence than the energy spectrum. In such cases, it is entirely possible that 
probability distributions based on local energy balance alone would fail to reproduce 
the observed effects. Then, as pointed out by Jaynes (1957b, 1979), the failure itself 
is conclusive evidence that some other constraint is important in the problem, while 
the details of the failure are likely to provide direct clues as to the nature of the 
missing constraint. The efficiency and simplicity of the maximum entropy technique 
arise because one need deal only with the constraints that are relevant to the processes 
one wants to predict. From this viewpoint, the chief conclusion reached here may be 
that one can say a great deal about turbulent flows on the basis of a very modest 
number of dynamical constraints. 
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